报告题目:The concentration behavior of ground state solutions for nonlinear Dirac equation
报告人:余渊洋博士 (中科院数学与系统科学研究院)
报告时间:12月3日下午15点
地点:腾讯会议 ID:586 917 765
报告人简介:
余渊洋,中科院数学与系统科学研究院数学所博士。目前主要从事非线性泛函分析和偏微分方程问题的研究,对于Schrodinger方程和方程组, Dirac方程,利用强不定泛函的临界点理论和扰动分析方法,研究方程解的存在性、多解性、集中性和衰减性等分析性质。已在包括Calc.Var PDE,Comm. Contemp.Math. ,Science China, Math. Nach.等国际知名期刊发表多篇学术论文.
报告简介:
In this talk, we consider a class of nonlinear Dirac equation arisen from quantum mechanics. Under the assumptions that the potential functions V, K and f are continuous but are not necessarily of class C1, for the singular perturbation problem with a small parameter, we prove the existence of ground state solution by using variational methods, and we determine a concrete set related to the potentials V and K as the concentration position of these ground state solutions. Moreover, we consider some properties of these ground state solutions, such as convergence and exponential decay estimate.