讲座题目:Acyclic list coloring of planar graphs
讲座时间:2023.11.16(周四)20:00-21:00
讲座地点:腾讯会议:110-802-356
主讲人:陈敏
主讲内容:
Let G = (V, E) be a graph. A proper vertex coloring of G is acyclic if G contains no bicolored cycle. Namely, every cycle of G must be colored with at least three colors. G is acyclically L-colorable if for a given list assignment L = {L(v) : v ∈ V }, there exists a proper acyclic coloring π of G such that π(v) ∈ L(v) for all v ∈ V . If G is acyclically L-colorable for any list assignment with |L(v)| ≥ k for all v ∈ V , then G is acyclically k-choosable. This concept was introduced by Gr¨unbaum in 1973.
It is known that for any two integers i and j such that {i, j} ⊂ { 5, 6, 7, 8, 9} \ { 8, 9}, every planar graph without { 4, i, j}-cycles is acyclically 4-choosable. In this talk, we shall complete the last remaining case by proving that every planar graph without { 4, 8, 9}-cycles is acyclically 4-choosable.
主讲人简介:
陈敏,博士,教授,博士生导师。2005年于浙江师范大学获理学学士(数学与应用数学专业),2008年于浙江师范大学获硕士学位,2010和2011年分别获法国波尔多第一大学博士学位和苏州大学博士学位,第九届世界华人数学家大会(ICCM 2022)45分钟特邀报告人。现任浙江师范大学教务处处长,兼任中国运筹学会图论组合分会常务理事、浙江省数学会理事、浙江省高等教育学会教师教育分会理事长等。入选浙江省高校中青年学科带头人、省高层次拔尖人才等,主持省一流课程、省课程思政示范课程,获省“最受师生喜爱的书记”等称号。主持国家自然科学基金4项(面上3项,青年1项),主持浙江省自然科学基金3项(重点1项,一般2项),主持留学回国人员科研启动基金1项,成果先后获省自然科学学术奖一等奖、省科学技术奖二等奖。在J. Combin. Theory Ser. B、European J. Combin.、J. Graph Theory等国内外学术刊物上发表60余篇SCI期刊学术论文。现为《Journal of Combinatorics Optimization》等国际期刊编委。